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O ne of the fundamental problems of orbital mechanics
is the Kepler problem,' the calculation of the final
position and velocity of an orbiting body (such as a planet
orbiting a star) given its initial position and velocity and
time of flight. In this column we discuss a solution to the
relativistic Kepler problem using an extension of the nu-
merical integration techniques commonly used for the non-
relativistic Kepler problem. We also discuss some interest-
ing properties of relativistic orbits in a spherically sym-
metric gravitational field.

We first describe a particular solution to the nonrela-
tivistic Kepler problem. A central mass is at the origin of an
(x,y,z) rectangular coordinate system whose axes are fixed
with respect to the distant stars. The planet moves around
the central mass, which is assumed to be much larger than
the mass of the planet. We say that the planet is a “test
particle” that does not perturb the position of the central
mass. For conical orbits, we choose a reference coordinate
system known as a perifocal frame,! where the x axis passes
through the origin and the perigee point (the point of closest
approach) of the orbit (see Fig. 1). We assume that there is
an observer who is stationary in the perifocal frame, and
who can measure the positions and velocities of the moving
test particle. Also, we assume that there is a clock attached
to the test particle, and the observer can measure the time
on this moving clock.

Given the test particle’s initial state vector [r(0), v(0)]
and a time of flight ¢, we want to find the final state vector
[r(£),¥(¢)]. If we assume that the central mass is a perfect
sphere, the gravitational field surrounding the central mass
is spherically symmetric, and the test particle’s motion lies
in the orbital plane. In this case the perifocal frame is con-
venient because all values of z are zero.

A common technique for solving the nonrelativistic
Kepler problem is to integrate the acceleration vector
a=dv/dt=—(GM/r*)r, where G is the gravitational con-
stant, M is the central mass, and r = |r|. Typically, a fourth-
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order Runge—Kutta integration scheme is used, although
other numerical integration schemes would be sufficient.
The total time of flight r is divided into small time steps to
produce the desired accuracy. An advantage of using this
approach (known as Cowell’s method"?) is that perturba-
tions of the acceleration of a test particle can be introduced.
For example, when our mission analysis group designs the
low Earth orbits used as “park” orbits for geostationary
communication satellite missions, our simulations take into
account the true oblate spheroidal shape of the Earth.” This
nonspherical shape sets up a nonspherical gravitational
field. When simulating movement along the park orbit, the
perturbed orbit is directly integrated using Cowell’s
method.

Although Cowell’s method was cenceived shortly after
the turn of the century, its simplicity and numerical stability
have led us to use it recently in an important targeting
algorithm for an interplanetary mission to Mars.* We used
Cowell’s method of numerical integration to search along
the park orbit for the point where the upper stage (which
injected the spacecraft onto the required hyperbolic trajec-
tory to Mars) should ignite. During the search, the program
directly integrated the perturbed orbit due to the Earth’s
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Figure 1. The perifocal coordinate frame. The apogee of the orbit is the
point of furthest recession. The y axis passes through the origin, lies in the
plane of the orbit, and is orthogonal to the x axis. The z axis passes
through the origin and is orthogonal to the plane of the test particle’s orbit.
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nonspherical shape. Even though Cowell’s method is more
computer intensive and not as numerically elegant as some
other perturbdtmn techniques, for example, Encke’s
method,"” it still is popular. The continued use of Cowell’s
method is due in part to the availability of fast computers,
both on the ground and in modern spacecraft.

After we consider the nonrelativistic problem, we will
show that general relativistic effects produce perturbed ac-
celerations, even around a perfectly spheroidal central mass
and that Cowell’s method can be used to compute the orbit.

We first transform the rectangular perifocal coordinates
to perifocal polar coordinates (r, 8, ¢). All motion occurs in
the (x,y) plane, the plane of the orbit given by #=m/2. The
latitudinal polar coordinate # can be ignored, and the polar
coordinate ¢ represents the in-plane longitudinal angular
motion. The rectangular coordinates are related to the polar
coordinates by

x=rcos ¢, y=rsing¢, z=0, (1)
where r=+x*+y?, and ¢=tan"! (y/x) is the angle be-
tween the x axis and the position of the test particle (see
Fig. 1).

Both the rectangular and polar coordinates are func-
tions of time. The time derivative of r, the radial velocity, is
given by

dr r-v .
g T @
The time derivative of ¢, the angular velocity, is given by

d¢ Ly

AT )
where Ly is the angular momentum (per unit mass) of the
orbit.” The angular momentum L is a constant of the mo-
tion and is given by Ly =|rxv|. For spherically symmetric
gravitational fields, L y can be derived from any rectangular
state of the orbit, for example, the initial state. Using Egs.
(1)—(3) and the initial rectangular state vector, we can com-
pute the corresponding initial polar coordinates and their
time derivatives.

Most programs utilize a subroutine for computmg the
derivatives that are to be numerically mtegrated The polar
state vector (v, ¢, dr/dt,d¢/dt) at time t is passed to this
subroutine and the polar accelerations are computed. The
acceleration of the polar coordinate r is given by differen-
tiating Eq. (2) with respect to time and can be written as:

dzr_ d EF oL o 1 dr
@ @y ety e g

where we have used r-a=—ra=—Gm/r and the relation
=(dr/dt)*+r¥(d jdr)>.
The acceleration of the polar coordinate ¢ is given by
differentiating Eq. (3):
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Note that the polar accelerations d*ridt* and d* ¢/dt2 can
be computed from the elements of the polar state given as
(r.é,dri/dt,dd/dt) and no information about the corre-
sponding rectangular coordinates is needed for the solution
of the Kepler problem.

Of course the use of polar coordinates is not necessary,
and the only reason we have discussed the use of polar
coordinates is that they are convenient for the relativistic
Kepler problem. There are numerical techniques for the
spherically symmetric, nonrelativistic Kepler problem that
are much more efﬁcu:nt for example, the method of uni-
versal variables.'

The relativistic Kepler problem

Given an initial state vector [r{0),v(0}] and a time of
flight ¢, the goal is to compute the final state wvector
[r(1),v(t)] with all general relativistic effects included. For
spherically symmetric gravitational fields, the motion of the
test particle lies in the orbital plane, so that 8=a/2. The
difference from the nonrelativistic solution arises from the
definition and derivation of the derivatives analogous to
Egs. (2)-(5).

In general relativity, time is incorporated as a math-
ematical dimension, so that the four-dimensional rectangu-
lar perifocal coordinates are (x,y,0,t) and the four-
dimensional polar coordinates are (r,7/2,¢,¢). The
coordinate time ¢ is the time measured by the clock held
stationary at the observer’s location in the perifocal frame.
The proper time 7 is the time on the clock moving with the
orbiting test particle as observed by the stationary observer
in the perifocal frame. The proper time is smaller than the
coordinate time due to time dilation. We say that the proper
time has a “velocity” with respect to the coordinate time
(and vice versa). These temporal velocities (time-dilation
factors) play prominent roles in the derivation of the rela-
tivistic forms of the derivatives analogous to Egs. (2)—(5).

The Schwarzschild metric,’ written in terms of the
proper-time differential, is used for defining the relativistic
accelerations of test particles orbiting perfectly spheroidal
and nonrotating central masses. The Schwarzschild metric
is a special case of a more general metric known as the Kerr
metric,> "' which is the correct metric to use for rotating
central masses. The Schwarzschild metric in terms of the
perifocal polar coordinates can be expressed as’

o,

5.2 1 dr-
T2 1,,,/,,

+rd¢) 1—%)@2. (6)

As usual, ¢ represents the speed of light, and r,=2GM/c*
is the Schwarzschild radius, the distance to the event hori-
zon of a centrally located black hole.”!"



Equation (6), derived using standard differential
geometry,!! relates the square of an infinitesimal proper
time interval to the squares of infinitesimal intervals in the
radius, longitudinal angular motion, and the coordinate
time. If we use Eq. (6) and more differential geometry, we
can write the polar coordinate equations of motion as

g Fodry 1 B "dr]z (do)\?
T\ r E)“*a(r—rs)zla "‘(ﬁ)

Jr1 r.c2 "dt]z_o .

2 2 (dir = 7
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E_\f E)—O, (7b)
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dr\ r E)_ : (7€)

From the equations of motion (7), we can derive the
relativistic (proper-time) polar accelerations as follows. The
relativistic radial acceleration is derived by solving for
d?r/d 7 in Eq. (7a). The first term of Eq. (7a) can be writ-
ten as
d s dr rdzrdrd(r
E( Tr=r d7 drdr\ror,

_F rs (dr)z
T r—r,d7 (r—ry)*ldr] @)

If we substitute Eq. (8) into Eq. (7a), we find

r—r.dr
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The second derivative of the polar coordinate ¢ with re-
spect to 7, that is, the relativistic angular acceleration, can
be derived by solving for d*¢/ d7* in Eq. (7b):

d*¢ 2drde i

4P T rdrdr (10
The second derivative of the coordinate time with respect to
7, that is, theqrelativistic temporal acceleration, is found by
solving for d°t/d 7 in Eq. (7c). The result is

d*t ry dtdr

ﬁ_f rir—ry) drdr’

We see from Egs. (9), (10), and (11) that the relativistic
polar-coordinate accelerations are expressed as functions of
the first-order proper-time derivatives dr/dt, d¢/dr, and
dit/dT. Because

dr dr dt de¢ do dt

st andisr T i

dr dtdr dr dt dr

(11)

(12)

we can compute these first-order relativistic derivatives us-
ing Egs. (2) and (3) if we can compute d¢/d . The equation
for dt/d T can be obtained using the first integral of differ-
ential geometry:7'10'11 ;

dt _[r—rs r 'dr‘)z 2 (d¢,') }uz‘

dr | r cXr-ry) dt)  E\dr

\ /

(13)

Note that only derivatives with respect to the coordinate
time appear in Eq. (13). The radial and angular velocities
are assumed to be directly observable (or computable) and
known to the stationary observer for any given coordinate-
time polar state. Also note that Egs. (9), (10), and (11) give
the second-order proper-time derivatives of the coordinates
r,¢, and ¢ in terms of the elements of the relativistic polar
state vector (r,¢,r.dr/dr,dd/dr,dt/dT). Hence we can
use a standard integration routine to update the elements of
the relativistic polar state vector.

The temporal velocity given by Eq. (13) is the general-
relativistic extension of the special-relativistic time-dilation
factor’ (1—wv?/c*)~ 2. For special-relativistic conditions, a
test particle obeys uniform and rectilinear motion (relative
to the stationary observer), so that (1—uv?/c?)~ " is time
invariant (dv/dt=0). For the general-relastivistic case in
which a test particle follows a curvilinear orbit (elliptical,
parabolic, or hyperbolic) about a central mass, r fluctuates
over the orbit, so that dt/d is not time invariant. Relative
to the stationary observer, the passage of proper time speeds
up, then slows down, etc., as the test particle orbits about
the central mass and r changes in value. As discussed in the
following, dt/d T and d 7/dt play important roles in relating
the nonrelativistic constants of motion to the relativistic
constants of motion.

We can relate the nonrelativistic angular momentum
Ly to the relativistic angular momentum Lz using
Ly=r>(d ¢/dr) [see Eq. (3)] and d ¢/dt=(d ¢/d 7)(d 7/d1)
[see Eq. (12)]. We have

dp _dedr T
PRl B et
G T T and hence Ly=Lp i (14)

where Ly =r"(d¢/d). As already noted, r generally fluc-
tuates in value (except for circular orbits), so that the de-
rivative d 7/dt also fluctuates. Equation (14) shows that the
nonrelativistic angular momentum is not a constant of mo-
tion as determined by the stationary observer in the perifo-
cal frame. Instead, it is the relafivistic angular momentum
L that is a constant of motion. If a quantity is constant with
respect to the passage of proper time (such as Lg), and if
dt/dr is time varying (as it is for conical orbits whose
eccentricities are nonzero), then this quantity cannot be con-
stant with respect to the passage of coordinate time. This
property provides a check on the correctness of the integra-
tion of the relativistic equations of motion. As a test particle
is integrated around its orbit about a central mass, the infe-
gration must produce a nonrelativistic angular momentum
that is periodic to the stationary observer, and the periodic-
ity must satisfy Eq. (14).

If the nonrelativistic angular momentum L y oscillates,
the nonrelativistic specific energy'? Ey given by

(GM)?

et Do A ERS
EN—(L 1) 2L§,
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also oscillates (e is the nonrelativistic eccentricity). Not
only do L, and E ; oscillate, so do all of the nonrelativistic
“constants of motion,” such as the semilatus rectum, the
semimajor axis, the radii of perigee and apogee, and the
eccentricity.

Numerical results

As an example, we discuss our results for a test particle
orbiting a nonrotating, totally spheroidal ten-solar-mass
black hole. In this case M =10M ,, where M o is the mass
of the Sun. The results show some interesting characteris-
tics of test particle movement in a Schwarzschild field.

The first step is to specify the =0 value of the rela-
tivistic polar state vector (r,¢,t,dr/dr,dp/dT,dt/dT). If
the initial position is given in rectangular coordinates, then
it is straightforward to transform x and y to r and ¢ using
r=+x’+y* and ¢=tan '(y/x). (The inverse tangent must
select the correct quadrant for ¢ as is done by the ATAN2
function in Fortran.) The last element of the initial polar
vector (dt/d7) is computed using Eq. (13), where the
coordinate-time polar velocities are computed using Egs.
(2) and (3). Once the coordinate-time polar velocities and
dt/d T have been computed, the initial values of dr/dr and
d¢/dr are computed using Eq. (12).

We do the numerical integration in equal coordinate-
time increments Af=t/n, where ¢ is the final time and #n is
the number of increments. For each A¢, the corresponding
proper-time increment is

A dr
Ar=At o
where d7/dt is found by inverting the present value of
dt/d T at the beginning of each time step. The integration
propagates the relativistic polar state vector forward by A7.
To the stationary observer, the full time step Az passes on
his/her stationary clock for each integration step, and an
amount of time A7 passes on the clock attached to the test
particle.

A double-precision implementation of the fourth-order
Runge—Kutta routine RK4 from the Numerical Recipes® set
of Fortran programs was used. RK4 requires the use of a
subroutine named DERIVS to compute the required deriva-
tives. The subroutine statement of DERIVS was written as
DERIVS(TIME,STATEVEC,DYDX) where the scalar ar-
gument TIME is the proper time, the array STATEVEC is
the relativistic polar state (r,¢,t.dridt,d¢/dr,dt/dT),
and the array DYDX is the returned relativistic polar deriva-
tives. Because the last three elements of STATEVEC are the
first-order derivatives of (r,¢,t), DERIVS sets the first
three elements of DYDX equal to the last three elements of
STATEVEC. The second-order derivatives are computed us-
ing Egs. (9), (10), and (11).

For the black hole of mass M =10M , the event ho-
rizon lies at the distance r =29.533 km. For the integration
computations, it is convenient to measure all lengths in
units of r /2, angles in radians, and time in seconds. A
convenient choice for the initial state of the test particle is to
start the simulation at either the perigee point or the apogee

(15)
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Figure 2. Plot of the test particle’s orbital pathway in the (x,y) plane.
Distances are measured in terms of r /2, where r;=29.333 km.

point of the first orbit. At these points the x velocity is zero,
and only the y velocity is nonzero. In our calculation the
initial state was chosen at the apogee point. The initial rect-
angular position vector was (40.0, 0, 0), and the initial
coordinate-time velocity vector was (0, 2198.8785, 0). The
orbit’s initial Newtonian eccentricity was e =0.530775,
where e=le| and e=(1/GM) [(v? —(GM/r)r—(r-v)v]
with v =|dr/dt|.

From this initial state the following relativistic polar
coordinate values and their proper time derivatives were
computed: #(0)=40, &(0)=0, #(0)=0, dr(0)/d7=0,
dep(0)/dr =56.752, dt/d7=1.03237203. The simulation
was run for 0.195 s, terminating at slightly more than 5 1/4
orbits. The total coordinate time of flight was divided into
10 000 time steps. The view of the stationary observer for
the first 3 1/4 orbits is given in Fig. 2 and is from above the
orbital plane. From this point of view, the test particle
started at the apogee of the first orbit and immediately be-
gan traveling towards the black hole. As the test particle
moves, the Newtonian orbital elements oscillate as we dis-
cussed. The oscillation in the scalar Newtonian eccentricity
e is plotted in Fig. 3 as a function of the coordinate time.
Note how e oscillates as the test particle travels from apo-
gee to perigee. The orbit is most circular at the perigee
points, but reaches a maximum eccentricity at points imme-
diately prior to and after the test particle reaches each apo-
gee point. This regular oscillation in the eccentricity is due
to the regular oscillations in the energy and angular mo-
mentum of the orbit. Due to the extreme relativistic effects,
the direction of the apogee and perigee points shifts (due to
precession) by 99.2°. A plot of the precession of the apogee
and perigee points as a function of coordinate time is given
in Fig. 4.
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Figure 3. The orbital eccentricity versus the coordinate time (in seconds).

Given the solution to the relativistic Kepler problem,
relativistic solutions to the second of the fundamental
orbital- dyndmlcs problems, the Lambert (or Gauss)
problem,* can be formulated. In the Lambert problem, one
attempts to find the initial velocity necessary to take an
object between two given positions in a given amount of
time. The relativistic Lambert problem solutions can be
used as the foundation for solving relativistic targeting
problems that will be required by future spacecraft traveling
with velocities close to the speed of light and/or orbiting in
intense gravitational fields such as those that exist near
black holes.

Problems for further study

(1) Use classical kinematics to derive the equation
v2=(dr/di)*+r*(d¢/dt)’.

(2) In the mathematics of the general theory, the rela-
tivistic velocities are given by u“=u'v®, where u is under-
stood as being a derivative with respect to 7, and v is a
derivative with respect to ¢. As an example, if a=r, then
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Figure 4. Perigeeapogee precession (in degrees) vs the coordinate fime.
Note that the rate of precession, given as tangents fo the curve, is a
maximum at the perigee points and is a minimum at the apogee points.

u'=u'=u'v'=(dt/d7)(dr/dt) [see Ecﬂ:[ (12)]. Also %wen
is the equation of the first integral,’ 1+g,u'u’=
where g,, are the elements of the Schwarzschild memc
tensor, and the Einsteinian summdtlon rules hold for con-
mon indices. Given that g, =r/c’(r—r,), EpuTi et
g,=—(r—r,)/r and all other off-diagonal metric tensor
elements are zero, derive Eq. (13).

(3) An important test of general relativity is the preces-
sion of the perigee of Mercury’s orbil. This precession can
be quantified by finding the angle made between the initial
major axis of the elliptical orbit and the final major axis of
the orbit. Using the relativistic Kepler algorithm, confirm
that Mercury’s orbit precesses by 43" during 100 years
worth of motion.

(4) Use the relativistic Kepler algorithm to solve the
following Lambert problem. For a nonrotating ten-solar-
mass black hole, a test particle has the beginning rectangu-
lar position vector (40,0,0) in units of » /2. After (0.044 772
s of flight, it is at the position (—6.3837,39.4873,0). Find
the initial and ending rectangular velocity vectors. [Answer:
initial velocity vector is (0,2198.8785,0); final velocity vec-
tor is (—2170.8455, —349.9973,0).]
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